Readspeaker Menü

Publikationen (die bedeutendsten Publikationen sind grün hervorgehoben)


 
 
79. M. Gimpel and S. Brantl. Dual-function small regulatory RNAs in bacteria. Invited MicroReview
Mol. Microbiol. doi: 10.1111/mmi.13558 (2016)
PubMed
78. E. Grohmann, N. Goessweiner-Mohr and S. Brantl. DNA binding proteins regulating pIP501 transfer and replication. Invited review for Frontiers in Mol. Biosciences 3: 42 (2016)
PubMed
77.
M. Gimpel and S. Brantl . Dual-function sRNA encoded peptide SR1P modulates moonlighting activity of B. subtilis GapA.
RNA Biol.
13: 916-926 (2016)

PubMed
76. J. Rosenberg, P. Müller, S. Lentes, M. J. Thiele, D. R. Zeigler, D. Tödter, H. Paulus, S. Brantl, J. Stülke and F. M. Commichau. ThrR, a DNA-binding transcription factor involved in controlling threonine biosynthesis in Bacillus subtilis.
Mol. Microbiol. 101: 879-893 (2016)
PubMed
75.
P. Müller, N. Jahn, C. Ring, C. Maiwald, R. Neubert, C. Meißner and S. Brantl. A multistress responsive type I toxin-antitoxin system: bsrE/SR5 from the B. subtilis chromosome.
RNA Biol. 13: 511-523 (2016)
PubMed
74. N. Jahn and S. Brantl. Heat-shock-induced refolding entails rapid degradation of bsrG toxin mRNA by RNases Y and J1. Microbiology 162: 590-599 (2016)
PubMed
73. C. Meißner, N. Jahn and S. Brantl. In vitro characterization of the type I toxin-antitoxin system bsrE/SR5 from Bacillus subtilis.
J. Biol. Chem.
291: 560-571 (2016)
PubMed
72.
N. Jahn, S. Brantl and H. Strahl. Against the mainstream: the membrane-associated type I toxin BsrG from Bacillus subtilis interferes with cell envelope biosynthesis without increasing membrane permeability.
Mol. Microbiol. 98: 651-666 (2015) 

PubMed
71.
H. Krügel, K. M. Klimina, G. Mrotzek, A. Tretyakov, G.  Schöfl, H. P. Saluz, S. Brantl, E. U. Poluektova, V. N. Danilenko. Expression of the toxin-antitoxin genes yefMLrh, yoeBLrh in human Lactobacillus rhamnosus isolates.
J. Basic Microbiol. 55: 982-991(2015)
PubMed
70.
S. Brantl and N. Jahn. sRNAs in bacterial type I and type III toxin-antitoxin systems.
FEMS Microbiol. Rev. 39: 413-427 (2015)

PubMed
69. S. Brantl. Antisense-RNA mediated control of plasmid replication – pIP501 revisited.
Plasmid 78: 4-16 (2015)
PubMed
68. S. Brantl and R. Brückner. Small regulatory RNAs from low-GC Gram-positive bacteria.
RNA Biol.
11: 443-456 (2014)
PubMed
67. S. Brantl. Plasmid replication control by antisense RNAs.
Microbiol. Spectr. 2(4), doi:10.1128/microbiolspec.PLAS-0001-2013 (2014)
Book chapter for "Plasmids: Biology and Impact in Biotechnology and Discovery" ASM Press. Book published May 2015.
pdf
66. N. Jahn and S. Brantl. One antitoxin – two functions: SR4 controls toxin mRNA decay and translation.
Nucleic Acids Res. 41: 9870-9880
(2013)
PubMed
65.
S. Brantl. Bacterial type I toxin-antitoxin systems. Editorial for Special Focus in RNA Biol. 9, 1488-1490 (2012)
PubMed
64. S. Durand, N. Jahn, C. Condon, and S. Brantl. Type I toxin-antitoxin systems in Bacillus subtilis.
RNA Biol. 9: 1491-1497 (2012)
PubMed
63.
M. Gimpel, H. Preis, E. Barth, L. Gramzow and S. Brantl. SR1 – a small RNA with two remarkably conserved functions. Nucleic Acids Res. 40: 11659-11672 (2012) 
PubMed
62.
M. Gimpel and S. Brantl. Construction of a modular plasmid family for chromosomal integration in Bacillus subtilis.
J. Microbiol. Methods 91: 312-317 (2012)
PubMed
61. S. Brantl. Acting antisense: plasmid- and chromosome-encoded sRNAs from Gram-positive bacteria. Invited review for
Future Microbiol. 7: 853-871 (2012)

PubMed
60. N. Jahn, H. Preis, C. Wiedemann and S. Brantl. BsrG/SR4 from  Bacillus subtilis – the first temperature-dependent type I toxin-antitoxin system.
Mol. Microbiol. 83: 579-598 (2012)
PubMed
59.


S.  Brantl. Small  regulatory RNAs (sRNAs) - key players in prokaryotic metabolism, stress response and virulence.
Regulatory RNAs: Basics, Methods, Applications. Springer Edition. Eds. Bibekanand Mallick, Zhumur Gosh.
Chapter 4, pp. 73-109. DOI 10.1007/978-3-642-22517-8_4 Springer-Verlag Berlin-Heidelberg (Jan. 2012)
pdf
58.
A. Licht, P. Freede and S. Brantl. Transcriptional repressor CopR acts by inhibiting RNA polymerase binding.
Microbiology 157: 1000-1008 (2011)
PubMed
57.
H. Krügel, A. Licht, G. Biedermann, A. Petzold, J. Lassak, Y. Hupfer, B. Schlott, C. Hertweck, M. Platzer, S. Brantl, and H.-P. Saluz. Cervimycin C resistance in Bacillus subtilis is due to a promoter-up mutation and increased mRNA stability of the constitutive ABC-transporter gene bmrA.
FEMS Microbiol. Lett. 313: 155-163 (2010)
PubMed
56.
S. Brantl. Small non-coding RNA in bacteria.
Chemical Biology of Nucleic Acids. John Wiley and Sons Ltd.Ed. Günther Mayer. Chapter 9, pp. 199-222 (2010)
pdf
55.
S. Brantl and A. Licht. Characterisation of Bacillus subtilis transcriptional regulators involved in metabolic processes.
Curr. Protein and Peptide Sci. 11: 274-291 (2010)
PubMed
54.

M. Gimpel, N. Heidrich, U. Mäder, H. Krügel, and S. Brantl. A dual function sRNA from B. subtilis: SR1 acts as a peptide encoding mRNA on the gapA operon.
Mol. Microbiol. 76: 990-1009 (2010)

PubMed
53. 

A. Licht and S. Brantl. The transcriptional repressor CcpN from Bacillus subtilis uses different repression mechanisms at different promoters.
J. Biol. Chem. 284: 30032-30038 (2009)

PubMed
52.

R. A. Eckart, S. Brantl, A. Licht. Search for additional targets of the transcriptional regulator CcpN from Bacillus subtilis. 
FEMS Microbiol. Lett. 299: 223-231 (2009)

PubMed
51.

H. Preis, R. A. Eckart, R. K. Gudipati, N. Heidrich, and S. Brantl. CodY activates transcription of a small RNA in Bacillus subtilis.  
J. Bacteriol. 191: 5446-5457 (2009)

PubMed
50.

S. Brantl. RNAs, Small.
Chapter for Encyclopedia of Microbiology. Editor: Moselio Schaechter,  Oxford: Elsevier Science. Pp. 409-438. (April 2009)

pdf 
49.

S. Brantl. Bacterial chromosome-encoded small regulatory RNAs. Invited review for
Future Microbiol. 4: 85-103. (2009)

PubMed
48.

S. Brantl. Antisense-RNAs. Cis und trans: Genregulation in Bakterien.
BIOspektrum Heft 6 (2008)

pdf 
47.

Licht, R. Golbik and S. Brantl. Identification of ligands affecting the activity of the transcriptional repressor CcpN from Bacillus subtilis.
J. Mol. Biol. 380: 17-30 (2008)

PubMed
46.

C. Geist and S. Brantl. TraM protein of plasmid R1: In vitro selection of the target region reveals two consensus 7 bp binding motifs spaced by a 4 bp linker of defined sequence.
Plasmid 59: 20-35. (2008)

PubMed
45.

S. Brantl. Metal sensing by RNA in bacteria: Exception or Rule.
ACS Chem Biol. 2: 656-660 (2007)

ACS 
44.

N. Heidrich, Moll I., and S. Brantl. In vitro analysis of the interaction between the small RNA SR1 and its primary target ahrC mRNA.
Nucl. Acids Res. 35: 4331-4346 (2007)

PubMed
43.

T. Waldminghaus, N. Heidrich, S. Brantl, and F. Narberhaus. FourU: A novel type of RNA thermometer in Salmonella.
Mol. Microbiol. 65,:413-424 (2007)

PubMed
42.

S. Brantl Regulatory mechanisms employed by cis-encoded antisense RNAs (invited review article).
Curr. Op. Microbiol. 10: 102-109 (2007)

PubMed 
41.

N. Heidrich and S. Brantl. Antisense-RNA mediated transcriptional attenuation in plasmid pIP501: The simultaneous interaction between two complementary loop pairs is required for efficient inhibition by the antisense RNA.
Microbiology 153: 420-427 (2007)

PubMed 
40.

Licht and S. Brantl. Transcriptional repressor CcpN from Bacillus subtilis compensates asymmetric contact distribution by cooperative binding.
J. Mol. Biol. 364: 434-448 (2006).

PubMed
39.

N. Heidrich, A. Chinali, U. Gerth and S. Brantl. The small untranslated RNA SR1 from the B. subtilis genome is involved in the regulation of arginine catabolism.
Mol. Microbiol. 62: 520-536 (2006)

PubMed
38.

S. Brantl. Bacterial gene regulation: Metal ion sensing by proteins or RNA.
Trends in Biotechnology 24: 383-386 (2006) (invited Research update)

PubMed
37.

Licht, S. Preis and S. Brantl. Implication of CcpN in the regulation of a novel untranslated RNA (SR1) in Bacillus subtilis.
Mol. Microbiol. 58: 189-206 (2005)

PubMed
36.

S. Brantl. Bacterial gene regulation: From transcription attenuation to riboswitches and ribozymes.
Trends in Microbiology 12, 473-475 (2004) (invited research focus article)

PubMed

35.

P. Freede and S. Brantl. Transcriptional repressor CopR: Use of SELEX to study the copR operator indicates that evolution was directed at maximal binding efficiency.
J. Bacteriol. 186: 6254-6264 (2004)

PubMed

34.

S. Brantl. Plasmid replication controlled by antisense RNAs.
Invited review for Section 1 in "The Biology of Plasmids". Chapter 3: S. 47-62. ASM press. Editors: B. Funnell and G. Phillips  (2004)

 

33.

N. Heidrich and S. Brantl. Antisense-RNA mediated Transcriptional Attenuation: Importance of a U-turn loop Structure in the Target RNA of Plasmid pIP501 for Efficient Inhibition by the Antisense-RNA.
J. Mol. Biol. 333: 917-929 (2003)

PubMed

32.

K. Steinmetzer, B. Behlke, M. Lorenz, P. Freede and S. Brantl. CopR Binds and Bends ist target DNA: Structure and Sequence of the DNA in the CopR-DNA complex. (Meeting Abstracts: Plasmid Biology 2002, International Symposium on Molecular Biology of bacterial plasmids).
Plasmid 48: 237 (2002)

PubMed

31.

S. Brantl. Antisense RNAs in plasmids: control of replication and maintenance. Invited minireview for Plasmid 48: 165-173 (2002)

PubMed

     
30.

K. Steinmetzer, K. Kuhn, J. Behlke, R. Golbik and S. Brantl. Plasmid pIP501 encoded transcriptional repressor CopR: single amino acids involved in dimerization are also important for folding of the monomer.
Plasmid 47: 201-209 (2002)

PubMed

29.

S. Brantl. Antisense-RNA regulation and RNA interference.
Bioch. Biophys. Acta 1575: 15-25 (2002) (Invited review)

PubMed

28.

K. Steinmetzer, J. Behlke, S. Brantl and M. Lorenz. CopR binds and bends its target DNA: A footprinting and fluorescence resonance energy transfer study.
Nucleic Acids Res. 30: 2052-2060 (2002)

PubMed

27.

S. Brantl and E. G. H. Wagner. An antisense RNA-mediated transcriptional attenuation mechanism functions in Escherichia coli.
J. Bacteriol. 184: 2740-2747 (2002) 

PubMed

26.

K. Kuhn, K. Steinmetzer and S. Brantl. Transcriptional repressor CopR: dissection of stabilizing motifs within the C terminus.
Microbiology 147: 3387-3392 (2001)

PubMed

25.

K. Steinmetzer, A. Hillisch, J. Behlke, S. Brantl.  Plasmid pIP501 encoded transcriptional repressor CopR: The acidic C terminus is not required for DNA binding and dimerization, but for protein stability.
Plasmid 45: 138 (2001) (Meeting Abstracts: Plasmid Biology 2000, International Symposium on Molecular Biology of bacterial plasmids)

 

24.

K. Kuhn, K. Steinmetzer, and S. Brantl. Transcriptional repressor CopR: The structured acidic C-terminus is important for protein stability.
J. Mol. Biol.  300: 1021-1031 (2000) 

PubMed

23.

S. Brantl and E. G. H. Wagner. Antisense RNA-mediated transcriptional attenuation - an in vitro  study of plasmid pT181.
Mol. Microbiol. 35: 1469-1482 (2000) 

PubMed

22.

K. Steinmetzer, A. Hillisch, J. Behlke, and S. Brantl. Transcriptional repressor CopR: Amino acids involved in forming the dimeric interface.
PROTEINS: Structure, Function and Genetics 39, 408-416 (2000)

PubMed

21.

K. Steinmetzer, A. Hillisch, J. Behlke, and S. Brantl. Transcriptional repressor CopR: Structure model based localization of the Deoxyribonucleic Acid Binding motif.
PROTEINS: Structure, Function and Genetics. 38: 393-406 (2000) 

PubMed

20.

K. Steinmetzer, J. Behlke and S. Brantl. Biochemical characterization of the pIP501 encoded transcriptional repressor CopR.
Plasmid 41: 170 (1999) (Meeting Abstracts: Plasmid Biology 98, International Symposium on Plasmid Biology.) 


 

19.

S. Brantl. Antisense-RNA-vermittelte Genregulation bei Bakterien.
BIOspektrum Heft 1: 27-30. (1999)


 

18.

E. G. H. Wagner and S. Brantl. Kissing and RNA stability in antisense control of plasmid replication.
TIBS 23: 451-454 (1998) 

PubMed

17.

S. Brantl and E. G. H. Wagner. Antisense-RNA mediated replication control: a comparison between plasmids pIP501 and pT181.
Biol. Chem. 379. Special Supplement p.54 (1998)

 

16.

K. Steinmetzer, J. Behlke and S. Brantl. Plasmid pIP501 encoded transcriptional repressor CopR binds to its target DNA as a dimer.
J. Mol. Biol. 283: 595-603 (1998)

PubMed

15.

S. Brantl and E. G. H. Wagner. Dual function of the copR gene product of plasmid pIP501.
J. Bacteriol. 179: 7016-7024 (1997) 

PubMed

14.

K. Steinmetzer and S. Brantl. Plasmid pIP501 encoded transcriptional repressor CopR binds asymmetrically at two consecutive major grooves of the DNA.
J. Mol. Biol. 269: 684-693 (1997)

 PubMed

13.

S. Brantl, and E. G. H. Wagner. An Unusually Long-lived Antisense RNA in Plasmid Copy Number Control: in vivo RNAs Encoded by the Streptococccal Plasmid pIP501.
J. Mol. Biol. 255: 275-288 (1996)

PubMed

12.

S. Brantl. The copR gene product of plasmid pIP501 acts as a transcriptional repressor at the essential repR promoter.
Mol. Microbiol. 14: 473-483 (1994)

PubMed
 

11.

S. Brantl and E. G. H. Wagner. Antisense RNA-mediated transcriptional attenuation occurs faster than stable antisense/target RNA pairing - an in vitro study of plasmid pIP501.
EMBO Journal 13: 3599-3607 (1994)

PubMed

10.

S. Brantl, C. Kummer and D. Behnke. Complete nucleotide sequence of plasmid pGB3631, a derivative of the Streptococcus agalactiae plasmid pIP501.
Gene 142: 155-156 (1994) 

PubMed

9.

S. Brantl,  E. Birch-Hirschfeld, and D. Behnke. RepR protein expression on plasmid pIP501 is controlled by an antisense RNA-Mediated transcription attenuation mechanism.
J. Bacteriol. 175, 4052-4061 (1993) 

PubMed

8.

S. Brantl, and D. Behnke. Characterization of the minimal origin required for replication of the streptococcal plasmid pIP501 in Bacillus subtilis.
Mol. Microbiol. 6, 3501-3510 (1992) 

PubMed
 

7.

S. Brantl, and D. Behnke: The Amount of RepR Protein Determines the Copy Number of Plasmid pIP501 in B. subtilis.
J. Bacteriol. 174: 5475-5478 (1992) 

PubMed

6.

S. Brantl, and D. Behnke: Copy number control of the streptococcal plasmid pIP501 occurs at three levels.  
Nucleic Acids Res. 20: 395-400 (1992)

PubMed

5.

S. Brantl, B. Nuez, and D. Behnke: In vitro and in vivo analysis of transcription within the replication region of plasmid pIP501.
Mol. Gen. Genet. 234: 105-112 (1992)

PubMed

4.

Gentechnologische Arbeitsmethoden. Ein Handbuch experimenteller Techniken und Verfahren. Herausgeber: Rudolf Hagemann (1990). Akademie-Verlag Berlin. Kapitel 1.3., 2.3., 2.8. und 2.11. von S. Brantl und K. Fritzsche.

 

3.

S. Brantl, D. Behnke, and J. C. Alonso: Molecular analysis of the replication region of the conjugative Streptococcus agalactiae plasmid pIP501 in Bacillus subtilis. Comparison with plasmids pAMβ1 and pSM19035.  
Nucleic Acids Res. 18: 4783-4790 (1990)

PubMed

2.

S. Brantl, A. Nowak, D. Behnke, and J. C. Alonso: Revision of the nucleotide sequence of the Streptococcus pyogenes plasmid pSM19035 repS gene.
Nucleic Acids Res. 17: 10110 (1989)

PubMed

1. S. Brantl, M. A. Eldarov, H. Rößler, B. Drescher, H. Lang, S. Rosenthal. K. G. Skryabin: Expression of env Sequences of the Bovine Leukemia Virus (BLV) in the Yeast Saccharomyces cerevisiae.
Yeast 4: 47-59 (1988)

PubMed